Accession Number:

ADA426564

Title:

Using Time-Resolved Photoluminescence to Measure the Excitation and Temperature Dependence of Carrier Relaxation in Mid-Wave Infrared Semiconductors

Descriptive Note:

Master's thesis Sep 2003-Jun 2004

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT

Personal Author(s):

Report Date:

2004-06-01

Pagination or Media Count:

62.0

Abstract:

Research in the field of mid-wave infrared MWIR semiconductor photonic devices has led to applications in a variety of disciplines including atmospheric monitoring, optical communications, non-invasive glucose testing for diabetics, and infrared IR countermeasures. One of the limiting factors for improving the modulation rates of MWIR devices is the carrier relaxation time. This is the time required for energetic carriers to cool to the edge of their respective bands in a bulk semiconductor material, or to the bottom of a well through inter- and intra-sub-band scattering in a quantum well QW structure. From these lower energy states, they can then recombine radiatively in photonic devices. This investigation utilized the nonlinear optical technique of frequency upconversion to perform time-resolved luminescence spectroscopy on epitaxial bulk InAs, InAsSbInAlAsSb type I QW structure, and InAsGaInSb type II QW samples to calculate carrier relaxation times in each as a function of excitation irradiance and sample temperature.

Subject Categories:

  • Lasers and Masers

Distribution Statement:

APPROVED FOR PUBLIC RELEASE