Accession Number:

ADA390886

Title:

Detection and Feature Extraction of Mine-Like Objects from Seismic Sonar Signals

Descriptive Note:

Master's thesis

Corporate Author:

NAVAL POSTGRADUATE SCHOOL MONTEREY CA

Personal Author(s):

Report Date:

2001-03-01

Pagination or Media Count:

99.0

Abstract:

This thesis investigates detection and classification issues when dealing with seismic signals and represents a first step in the direction of automated detection and classification of mine-like signals obtained using a seismic approach. A computationally cheap detection scheme that utilizes a combination of a simple combination of a short- term energy and zero-crossing detector is implemented and tested on five different classes of targets, resulting in a 100 detection rate for all non-natural targets and 33 detection rate of mine sized rock buried in sand. Three feature extraction methods are evaluated for their possible use in a Gaussian Mixture Model classifier higher order moments, pole extraction from impulse response modeling using the Steiglitz-McBride iteration, and Radial Basis Function Modeling of data. These methods demonstrate promising results for use in a classifier. However, only a very limited number of data trials per class was available in this work, and the proposed set-up needs to be further validated with additional data.

Subject Categories:

  • Undersea and Antisubmarine Warfare

Distribution Statement:

APPROVED FOR PUBLIC RELEASE