Accession Number:

ADA374867

Title:

An Isoparametric Three Dimensional Beam Element Using the Absolute Nodal Coordinate Formulation

Descriptive Note:

Technical rept

Corporate Author:

ILLINOIS UNIV AT CHICAGO CIRCLE DEPT OFMECHANICAL ENGINEERING

Personal Author(s):

Report Date:

2000-02-01

Pagination or Media Count:

34.0

Abstract:

The description of a beam element by only the displacement of its center line leads to some difficulties in the representation of the torsion and shear effects. For instance such a representation does not capture the rotation of the beam as a rigid body about its own axis. This problem was circumvented in the literature by using a local coordinate system in the incremental finite element method or by using the multi body floating frame of reference formulation. The use of such a local element coordinate system leads to a highly nonlinear expression for the inertia forces as the result of the large element rotation. In this investigation, an absolute nodal coordinate formulation is presented for the large rotation and deformation analysis of three dimensional beam elements. This formulation leads to a constant mass matrix, and as a result, the vectors of the centrifugal and Coriolis forces are identically equal to zero. The formulation presented in this paper takes into account the effect of rotary inertia, torsion and shear effects, and ensures continuity of the slopes as well as the rotation of the beam cross section at the nodal points. Using the proposed formulation curved beams can be systematically modeled.

Subject Categories:

  • Mechanics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE