Accession Number:



Synthesis and Characterization of Ordered Mesoporous Silica Films on Oxidized Silicon Substrates

Descriptive Note:

Master's thesis

Corporate Author:


Personal Author(s):

Report Date:


Pagination or Media Count:



The fabrication of advanced electronic devices that operate on quantum effects requires the patterning of semiconductors on the scale of 50 A, which cannot be achieved by any of the currently available patterning technologies. This project pursued a novel approach the fabrication of a self-assembling template which would allow the deposition of ordered arrays of germanium dots on silicon substrates, on length scales permitting the operation of quantum devices at room temperature. The template is the mesoporous silicate MCM-41, discovered by researchers at Mobil Chemical Corp. This material consists of highly ordered, two-dimensional, hexagonal arrays of very uniform pores in silicon dioxide, with diameters tunable from 20 A to over 100 A. If pore arrays of this material can be grown as thin films on silicon substrates, with the pores oriented normal to the substrate surface, the resulting structure will provide a template for the deposition of germanium dots. Germanium can then be deposited through the pores in the film and onto the silicon substrates by chemical or physical vapor deposition. The template film can then be etched away, leaving a hexagonally ordered array of germanium dots on the silicon substrate. Mesoporous silica films were grown on oxidized silicon substrates by acidic synthesis. The substrates were first patterned by optical lithography to produce vertical features with dimensions of the order of microns. The substrates were then coated with hydrophobic polymer monolayers to alter their surface energy. This monolayer was selectively removed from the horizontal surfaces of some of the substrates, leaving it only on the vertical surfaces of the patterned features. It was thought that the difference in surface energy between horizontal and vertical surfaces would induce the pores to align along the vertical surfaces.

Subject Categories:

  • Electrical and Electronic Equipment
  • Quantum Theory and Relativity

Distribution Statement: