Accession Number:

ADA361441

Title:

Kinetic Model of a Space-Based, Br(4 (2)P 1/2 -> 4 (2)P 3/2) Laser Pumped by Solar Photolysis of IBr

Descriptive Note:

Master's thesis

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH

Personal Author(s):

Report Date:

1999-03-01

Pagination or Media Count:

177.0

Abstract:

A kinetic model of the directly solar-pumped, atomic bromine laser-operating on the Br 4 2P 12 -- 2P 32 transition under IBr photolysis-was developed, executed, and interpreted. In recognition of an evolving national interest in space-based laser development, the model presumed operation on a space station platform. Results indicate that a well-engineered IBr laser is capable of generating 1.2 kilowatts of continuous-wave CW power under a pumping concentration of 20,000 solar units. Such performance translates to an efficiency of roughly 0.29, appreciably better than the 0.1 ascribed to the heretofore leading solar-pumped competitor. An extensive analysis of kinetic data suggests the unanticipated conclusion that, under proper parameter selection, sustained CW oscillation can be achieved absent any flow mechanism whatsoever. This result seems most strongly predicated upon proper bandpass discrimination a 457-545 nm range of incidence produced optimal results. Sensitivity analysis revealed a strong degree of competition among the lasers constituent processes two-body quenching and exchange reactions were predominant. With the significant exception of iodine recombination, three-body processes were negligible. Thermal increases, as well as rapid growth of atomic iodine, appear to pose the greatest kinetic threat to CW lasing.

Subject Categories:

  • Inorganic Chemistry
  • Lasers and Masers

Distribution Statement:

APPROVED FOR PUBLIC RELEASE