Accession Number:

ADA359302

Title:

MesoScale Ocean Forecast/Assimilation Studies

Descriptive Note:

Final rept. 15 Dec 95-30 Sep 98

Corporate Author:

SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA

Personal Author(s):

Report Date:

1999-01-13

Pagination or Media Count:

5.0

Abstract:

The long-term goal over this three year project has been to develop computer software needed to optimize initial conditions, internal parameters and external parameters for the Harvard primitive equation PE model in order to produce the best forecasts in an arbitrary region. This new tool invokes an inverse technique to fuse all available data types, gathered non-synoptically, with optimized model dynamics. The technique is distinct from and complementary to the optimal interpolation and Kalman filter assimilation strategies now being developed and used at Harvard e.g., Lermusiaux, 1997. The scientific objectives of this research include answering the following questions. Can forecast skill in a highly unstable region like the Iceland-Faeroe Front be extended to 7 days Can a diagnostic simulation over a 10-day interval in that region include all the data in an inverse calculation, or is it too nonlinear What are the relative impacts of the various data types CTDXBTXCTD casts, current meters, surface drifters on making forecasts in this region The technical objectives encompass the details of the model fitting process. How nonlinear is the fit Can the nonlinearity be reduced by optimizing large-scale structure first How much data can be fit at one time Is the distribution of the data sufficient to initialize the model Are the open boundaries causing instabilities in the model Real-time ocean forecasting involves assembling an initial state which often requires merging many data types that are usually gathered over non-synoptic intervals. Furthermore, dynamical ocean forecast models still require improvements in their physics including parameterizations. We are addressing these two issues simultaneously in applying a standard inverse technique to the Harvard PE ocean model in the context of an unique dataset in the Iceland-Faeroe frontal region.

Subject Categories:

  • Physical and Dynamic Oceanography

Distribution Statement:

APPROVED FOR PUBLIC RELEASE