Accession Number:

ADA355491

Title:

Multisensor Methods for Buried Unexploded Ordnance Detection, Discrimination, and Identification

Descriptive Note:

Final rept.

Corporate Author:

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS

Report Date:

1998-09-01

Pagination or Media Count:

183.0

Abstract:

Unexploded ordnance UXO cleanup is the number one priority Army installation remediationrestoration requirement The problem is enormous in scope, with millions of acres and hundreds of sites potentially contaminated. Before the UXO can be recovered and destroyed, it must be located. UXO location requires surface geophysical surveys. The geophysical anomalies caused by the UXO must be detected, discriminated from geophysical anomalies caused by other sources, and ideally identified or classified. Recent UXO technology demonstrations, live site demonstrations, and practical UXO surveys for site cleanup confirm that most UXO anomalies can be detected with probabilities of detection of 90 percent or better, however there is little evidence of discrimination capability i.e., the false alarm rates are high, and there is no identification capability. Approaches to simultaneously increase probability of detection and decrease false alarm rate and ultimately to give identificationclassification capability involve rational multisensor data integration for discrimination and advanced development of new and emerging technology for enhanced discrimination and identification. The goal of multisensor data integration is to achieve true joint inversion of data to a best-fitting model using realistic physics-based models that replicate UXO geometries and physical properties of the UXO and surrounding geologic materials. Data management, analysis, and display procedures for multisensor data are investigated. The role of empirical, quasi-empirical, and analytical modeling for UXO geophysical signature prediction are reviewed and contrasted with approaches that require large signature databases e.g., expert systems, neural nets, signature database comparison for training or best-fit comparison. A magnetic modeling capability is developed, validated, and documented that uses a prolate spheroid model of UXO.

Subject Categories:

  • Active and Passive Radar Detection and Equipment

Distribution Statement:

APPROVED FOR PUBLIC RELEASE