Accession Number:

ADA341564

Title:

Practical Parallel Divide-and-Conquer Algorithms

Descriptive Note:

Doctoral thesis

Corporate Author:

CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE

Personal Author(s):

Report Date:

1997-12-01

Pagination or Media Count:

172.0

Abstract:

Nested data parallelism has been shown to be an important feature of parallel languages, allowing the concise expression of algorithms that operate on irregular data structures such as graphs and sparse matrices. However, previous nested data-parallel languages have relied on a vector PRAM implementation layer that cannot be efficiently mapped to MPPs with high inter-processor latency. This thesis shows that by restricting the problem set to that of data-parallel divide and conquer algorithms I can maintain the expressibility of full nested data-parallel languages while achieving good efficiency on current distributed memory machines. Specifically, I define the team parallel model, which has four main features data-parallel operations within teams of processors, the subdivision of these teams to match the recursion of a divide and conquer algorithm, efficient single processor code to exploit existing serial compiler technology, and an active load balancing system to cope with irregular algorithms. I also describe Machiavelli, a toolkit for parallel divide and conquer algorithms that implements the team parallel model. Machiavelli consists of simple parallel extensions to C, and is based around a distributed vector datatype. A preprocessor generates both serial and parallel versions of the code, using MPI as its parallel communication mechanism to assure portability across machines. Load balancing is performed by shipping function calls between processors. Using a range of algorithm kernels including sorting, finding the convex hull of a set of points, computing a graph separator, and matrix multiplication, I demonstrate optimization techniques for the implementation of divide and conquer algorithms. An important feature of team parallelism is its ability to use efficient serial algorithms supplied by the user as the base case of recursion.

Subject Categories:

  • Computer Programming and Software

Distribution Statement:

APPROVED FOR PUBLIC RELEASE