Accession Number:

ADA333519

Title:

Level Spacings for SL(2,p)

Descriptive Note:

Corporate Author:

CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE

Report Date:

1997-01-15

Pagination or Media Count:

16.0

Abstract:

We investigate the eigenvalue spacing distributions for randomly generated 4-regular Cayley graphs on SL2Fp by numerically calculating their spectra. We present strong evidence that the distributions are Poisson and hence do not follow the Gaussian orthogonal ensemble. Among the Cayley graphs of SL2Fp we consider are the new expander graphs recently discovered by Y. Shalom. In addition, we use a Markov chain method to generate random 4-regular graphs and observe that the average eigenvalue spacings are closely approximated by the Wigner surmise.

Subject Categories:

  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE