DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA295617
Title:
Active Learning with Statistical Models.
Descriptive Note:
Corporate Author:
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
Report Date:
1995-01-01
Pagination or Media Count:
7.0
Abstract:
For many types of learners one can compute the statistically optimal way to select data. We review how these techniques have been used with feedforward neural networks. We then show how the same principles may be used to select data for two alternative, statistically-based learning architectures mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE