DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA289817
Title:
Interface Properties of Wide Bandgap Semiconductor Structures.
Descriptive Note:
Semiannual technical rept. 1 Jul-31 Dec 94,
Corporate Author:
NORTH CAROLINA STATE UNIV AT RALEIGH
Report Date:
1994-12-01
Pagination or Media Count:
205.0
Abstract:
The initial stages of epitaxial growth of SiC on 6H-SiC substrates were studied by UHV STM. The results showed single bilayer undulating steps and stepped structures that were related to the annealing temperature. A new method of cleaning SiC based on silane exposure was developed, and the surfaces examined by UV photoemission showed the presence of surface electronic states. Gas source MBE growth of SiC on 2H-A1N indicated the potential of the formation of 2H-SiC, and doped 3C- and 6H-SiC have been grown on 6H-SiC. Pt films on 6H-SiC exhibited 1.26eV Schottky barrier with nearly ideal electrical properties. A planar RF system was developed for large area diamond deposition. Bias-enhanced nucleation of diamond on TiC111 has been demonstrated. Theoretical studies of F-based ALE of diamond indicated that HF desorption is a crucial step. The negative electron affinity of H-terminated diamond was verified with combined theoretical and experimental studies. Future studies of NEA diamond surfaces will involve a new plasma system integrated into the UHV transfer line. A system for measuring electron emission has been designed. High purity GaN powder has been synthesized. ALE of GaN and InGaN has been analyzed to address several growth related difficulties. A1N and SiCAlN pseudomorphic heterostructures have been grown by plasma assisted GSMBE. A computer controlled CVD system has been constructed for the growth of A1N, GaN and InN. OMVPE techniques have been used to prepare doped GaN monocrystalline thin films. A system has been designed for ECR deposition of the nitrides. jg
Distribution Statement:
APPROVED FOR PUBLIC RELEASE