Accession Number:

ADA280148

Title:

Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators

Descriptive Note:

Technical rept.

Corporate Author:

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB

Personal Author(s):

Report Date:

1993-05-01

Pagination or Media Count:

167.0

Abstract:

This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibals gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures. Distributed control, Autonomous robot, Fault tolerance, Adaptive behavior, Legged locomotion, Behavior based control.

Subject Categories:

  • Electrical and Electronic Equipment
  • Computer Programming and Software
  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE