Accession Number:

ADA250165

Title:

Energetics of Nanoscale Graphitic Tubules

Descriptive Note:

Interim rept. 1 Sep 1991-30 Aug 1992

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC

Report Date:

1992-04-01

Pagination or Media Count:

21.0

Abstract:

Using both empirical potentials and first-principles total energy methods, we have examined the energetics and elastic properties of all possible graphitic tubules with radii less than 0.9 nm. We find that the strain energy per carbon relative to an unstrained graphite sheet goes as the inverse square of the tubule radius, R, and is insensitive to other aspects of the lattice structure, indicating that relationships derivable from continuum elastic theory persist well into the small radius limit. we also predict that this Strain energy is much smaller than that in highly-symmetric fullerene clusters With similar radii, suggesting a possible thermodynamic preference for tubular structures rather than cage structures. The empirical potentials further predict that the elastic constants along the tubule axis generally soften with decreasing tubule radius, although with a distinct dependence on helical conformation.

Subject Categories:

  • Organic Chemistry
  • Physical Chemistry

Distribution Statement:

APPROVED FOR PUBLIC RELEASE