DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADA243878
Title:
Binaural Sound Localization Using Neural Networks
Descriptive Note:
Master's thesis,
Corporate Author:
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
Report Date:
1991-12-12
Pagination or Media Count:
122.0
Abstract:
The purpose of this study was to investigate the use of Artificial Neural Networks to localize sound sources from simulated, human binaural signals. Only sound sources originating from a circle on the horizontal plane were considered. Experiments were performed to examine the ability of the networks to localize using three-different feature sets. The feature sets used were time-samples of the signals, mena Fast Fourier Transform magnitude and cross correlation data, and auto-correlation and cross correlation data. The two different types of sound source signals considered were tones and gaussian noise. The feature set which yielded the best results in terms of classification accuracy over 91 for both tones and noise was the auto-correlation and cross- correlation data. These results were achieved using 18 classes 20 per class. The other two feature sets did not produce accuracy results as high or as consistent between the two signal types. When using time-samples of the signals as features it was observed that in order to accurately classify tones of random-frequency, it was necessary to train with random-frequency tones rather than with tones of one, or a few discrete frequencies.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE