Accession Number:

ADA170809

Title:

Pattern Recognition Based on Scale Invariant Discriminant Functions.

Descriptive Note:

Technical rept.,

Corporate Author:

PITTSBURGH UNIV PA CENTER FOR MULTIVARIATE ANALYSIS

Personal Author(s):

Report Date:

1986-04-01

Pagination or Media Count:

18.0

Abstract:

Some probability models for classifying individuals as belonging to one of two or more populations using scale invariant discriminant functions are considered. The investigation is motivated by practical situations where the observed data on an individual are in the form of ratios of some basic measurements or measurements scaled by an unknown non-negative number. The probability models are obtained by considering a p-vector random variable X with a known distribution and deriving the distribution of the random vector Y GX .1 X, where GX is a non-negative measure of size such that Glambda X Lambda GX for lambda 0. Explicit expressions are obtained for the densities of what are called Angular Gaussian, Compositional Gaussian, Type 1 and Compositional Gaussian, Type 2 distributions. Author

Subject Categories:

  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE