Accession Number:

ADA169082

Title:

Carbon Monoxide Adsorption on a Platinum Electrode Studied by Polarization Modulated FT-IR Reflection-Absorption Spectroscopy. II. CO Adsorbed at a Potential in the Hydrogen Region and its Oxidation in Acids.

Descriptive Note:

Technical rept.,

Corporate Author:

IBM ALMADEN RESEARCH CENTER SAN JOSE CA

Report Date:

1986-05-16

Pagination or Media Count:

22.0

Abstract:

The carbon monoxide layer on a platinum electrode, which is adsorbed at 0.05 V relative to a normal hydrogen electrode NHE in 0.5l5 M sulfuric acid, and its oxidation to carbon dioxide at higher electrode potentials has been studied by both electrochemical and in-situ Fourier transform infrared reflection-absorption spectroscopy FT-IRRAS. Polarization modulated FT-IRRAS was used to measured the vibrational spectra of adsorbed carbon monoxide as well as the evolved CO2 as a function of electrode potential. It is shown that the dominant surface species is linearly adsorbed CO, but that the bridge bonded species is oxidized first at about 0.20 V, giving rise to a decrease in the linear C-O stretching frequency of along with a broadening of the band. Oxidation of the linearly adsorbed CO begins at 0.35 V, producing a further, sharp decrease in the C-O stretching frequency as well as a considerable broadening of the band. It is concluded that the oxidation of the CO adlayer produced at 0.05 V occurs randomly throughout the adlayer, in contrast to oxidation at island edges, which is characteristic of CO adsorbed at 0.4 V. It is proposed that the difference in behavior of these two kinds of adsorbed CO is due to crystallographic modification of the platinum surface surface when the CO is adsorbed at 0.05 V in the hydrogen region which results in a higher density of bridge bonded CO.

Subject Categories:

  • Atomic and Molecular Physics and Spectroscopy

Distribution Statement:

APPROVED FOR PUBLIC RELEASE