Accession Number:

ADA160994

Title:

Error Bounds for Newton-Like Methods Under Kantorovich Type Assumptions.

Descriptive Note:

Technical summary rept.,

Corporate Author:

WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER

Personal Author(s):

Report Date:

1985-07-01

Pagination or Media Count:

43.0

Abstract:

To find sharper error bounds for iterative solutions of nonlinear equations is one of the important subjects in numerical analysis. This paper gives a method to derive new a posteriori error bounds for Newton-like methods in a Banach space under Kantorovich type assumptions. The bounds found are sharper than those of Miel and include those recently obtained by Moret. The applicability of the authors method is studied for other types of iterations. Various error bounds for the Newton method under the Kantorovich assumptions are surveyed in the Appendix. Keywords Estimates OperatorsMathematics Convergence.

Subject Categories:

  • Theoretical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE