Accession Number:

ADA160662

Title:

Aerodynamics of Two-Dimensional Blade-Vortex Interaction,

Descriptive Note:

Corporate Author:

JAI ASSOCIATES MOUNTAIN VIEW CA

Report Date:

1985-01-01

Pagination or Media Count:

20.0

Abstract:

A computational procedure and some numerical results of unsteady interaction of a helicopter rotor blade with a Lamb-like vortex of finite viscous core in subsonic and transonic flows is presented. The interaction considered here is one of the limiting cases of a more complex interaction typically encountered on helicopter rotor blade. In this limit, the interacting flow field is considered to be unsteady but two-dimensional. Accordingly, unsteady, two-dimensional, thin-layer Navier-Stokes equations are solved using a prescribed-vortex method also called perturbation method for the cases of stationary and moving rotor blades encountering a moving vortex passing the blades. The numerical results are compared with the recent experimental data of Caradonna et al. for the latter case. The comparison shows that for the transonic cases, the flow field is dominated by the presence of the shock waves, with strong indications of unsteady time lags in the shock-wave motions and shock-wave strengths, and of important three-dimensional effects. For subcritical-flow cases, however, the unsteady lag effects on the basic rotor blade are absent, and three-dimensional effects appear to be negligible, unlike the supercritical case. The subcritical calculations are in good agreement with the experimental data.

Subject Categories:

  • Helicopters
  • Fluid Mechanics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE