Accession Number:

ADA101143

Title:

Multiple Arrested Synthetic Aperture Radar.

Descriptive Note:

Doctoral thesis,

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

Personal Author(s):

Report Date:

1981-05-01

Pagination or Media Count:

298.0

Abstract:

This report contains the formulation and analysis of an airborne synthetic aperture rate scheme which employs a multiplicity of antennas with the displaced phase center antenna technique to detect slowly moving targets embedded in a severe clutter environment. The radar is evaluated using the target to clutter power ratio as the measure of performance. Noise is ignored in the analysis. An optimization scheme which maximizes this ratio is employed to obtain the optimum processor weighting. The performance of the MASAR processor with optimum weights is compared against that using target weights composed of the target signal and that using binomial weights which, effectively, form an n-pulse canceller. Both the target and the clutter are modeled with the electric field backscattering coefficient. The target is modeled simply as a deterministically moving point scatterer with the same albedo as a point of clutter. The clutter is modeled as a homogeneous, isotropic, two-dimensional, spatiotemporal random field for which only the correlation properties are required. The analysis shows that this radar, with its optimum weighting scheme, is a promising synthetic aperture concept for the detection of slowly moving targets immersed in strong clutter environments. Author

Subject Categories:

  • Aircraft
  • Electrical and Electronic Equipment
  • Active and Passive Radar Detection and Equipment

Distribution Statement:

APPROVED FOR PUBLIC RELEASE