Accession Number:

ADA089774

Title:

Applicability of the Finite Element Concept to Hyperbolic Equations.

Descriptive Note:

Interim rept. May-Oct 79,

Corporate Author:

DAYTON UNIV OH RESEARCH INST

Personal Author(s):

Report Date:

1980-06-01

Pagination or Media Count:

152.0

Abstract:

The report analyses by means of examples the applicability of the finite element method in the form of a weighted residual approach to hyperbolic equations, using rectangular elements and bi-linear, bi-quadratic or bi-cubic shape functions. For sinusoidal initial conditions the errors are discussed for semi and fully discretized approximating equations. All methods have appreciable errors if the wave lengths are short. For semi-discretized methods, higher order elements give more accurate results at intermediate wave lengths. The fully discretized version for cubic elements becomes unstable, unless it is carried out as a combination of collocation and weighted residual methods. An example of a different kind shows the character of perturbations as one approaches the sonic line. A rationale for the choice of weight functions can be obtained by relating them to the Greens function. In two-dimensional problems, one can improve the cancellation of long distance effects of truncation errors by choosing characteristics as element boundaries. Author

Subject Categories:

  • Theoretical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE