Accession Number:

ADA059365

Title:

The Application of Optimal Control Theory to Hybrid Electric Transit Systems.

Descriptive Note:

Master's thesis,

Corporate Author:

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO

Personal Author(s):

Report Date:

1977-10-01

Pagination or Media Count:

138.0

Abstract:

In an effort to minimize energy losses through the optimal control of an electric rapid transit system, three vehicleflywheel configurations are modeled using the bond graph technique. Field and armature control of an on-board flywheel are presented along with field control of a station flywheel used in conjunction with a typical regenerative vehicle. Pontryagins Minimum Principle is used to develop the optimal control trajectories for vehicle accelerations and decelerations. The time integral of mechanical and electrical losses is minimized as the cost function. Armature control of the hybrid vehicle and field control of the station flywheel are equally efficient in the reversible energy flow between vehicle and flywheel. Field control of the hybrid vehicle is slightly less efficient. The optimal trajectory for deceleration is nearly linear, but the optimal trajectory for acceleration, due to the effect of mechanical losses over a longer time period, is highly concave and differs radically from a typical transit acceleration. The vehicle weight and resistance in the armature windings have a large influence on system performance. Author

Subject Categories:

  • Energy Storage
  • Surface Transportation and Equipment
  • Machinery and Tools

Distribution Statement:

APPROVED FOR PUBLIC RELEASE