Accession Number:

ADA028054

Title:

Maximum Theoretical Angular Accuracy of Planar and Linear Arrays of Sensors

Descriptive Note:

Corporate Author:

ROME AIR DEVELOPMENT CENTER GRIFFISS AFB NY

Personal Author(s):

Report Date:

1976-05-01

Pagination or Media Count:

34.0

Abstract:

A study has been made of the maximum theoretical accuracy in the angular location of a radiating object that is achievable by using a planar or linear array. The elements are assumed to have identical radiation patterns and the complex voltages observed at their ports are assumed to be subject to phase measurement errors, having normal probability density. An optimum scheme for the statistical extraction of the parameters defining the direction is established. It consists of combining the observed phases linearly with weights depending upon the element locations. It is shown that the presence of thermal noise, for sufficiently high signal to noise ratio, does not change the structure of the estimator. Comparison with conventional multiple interferometric techniques indicates the superiority of the proposed scheme. Finally, a limited numerical study on a small linear array vertically located on a reflecting terrain is performed. Although in such a situation the scheme proposed is not the theoretical optimum, it leads to errors that, for most directions of the target, are smaller than those found for the same array when using conventional multiple interferometer techniques.

Subject Categories:

  • Active and Passive Radar Detection and Equipment
  • Radio Communications

Distribution Statement:

APPROVED FOR PUBLIC RELEASE