Accession Number:

ADA023965

Title:

Structural Inelasticity. XII. Large Rotationally-Symmetric Plastic Deformations of a Sandwich-Toroidal Shell.

Descriptive Note:

Technical rept.,

Corporate Author:

MINNESOTA UNIV MINNEAPOLIS DEPT OF AEROSPACE ENGINEERING AND MECHANICS

Personal Author(s):

Report Date:

1975-04-01

Pagination or Media Count:

41.0

Abstract:

A nonlinear theory of large rotationally-symmetric plastic deformation of a sandwich-toroidal shell has been formulated. The generating curve for the toroid is assumed to be open and of an arbitrary shape. Deformation of the shell, described by the linear Cauchys measure, is governed by the Love-Kirchhoff hypothesis. On the basis of the principle of virtual work non-linear equations of equilibrium have been derived. The material of the sandwich sheets is assumed to be rigidperfectly-plastic and to obey the Levy-Mises theory of plastic flow and Huber-Mises-Hencky yield condition. The fundamental equations have been reduced to a system of six, coupled, ordinary, nonlinear differential equations which are, however, linear with respect to the first derivatives of unknown functions. By the use of a numerical procedure the initialboundary problem can be reduced to a boundary value problem only, for each step of the loading process. Different types of boundary problems as well as continuity requirements have been discussed. Author

Subject Categories:

  • Structural Engineering and Building Technology
  • Mechanics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE