Accession Number:

ADA023051

Title:

Compositions, Inverses and Thinnings of Random Measures.

Descriptive Note:

Interim rept.,

Corporate Author:

SYRACUSE UNIV N Y DEPT OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

Personal Author(s):

Report Date:

1975-12-01

Pagination or Media Count:

26.0

Abstract:

Compositions and inverses of measures on the real line are defined as measures whose cumulative distribution functions c.d.f.s are compositions and inverses, respectively, of the c.d.f.s of the measures involved. We study the continuity of the composition and inverse operators on measures. We then show how a large class of thinnings of point processes and random measures can be characterized by compositions of random measures. We present several convergence theorems for such compositions. These contain, as special cases, the classical thinning theorem of Renyi and many of its contemporary extensions. Author

Subject Categories:

  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE