Accession Number:
ADA001135
Title:
Aerodynamic Heating of Supersonic Blunt Bodies
Descriptive Note:
Final rept. 7 Jan-31 Aug 1974,
Corporate Author:
IOWA UNIV IOWA CITY DIV OF ENERGY ENGINEERING
Personal Author(s):
Report Date:
1974-09-01
Pagination or Media Count:
57.0
Abstract:
The object of the research is to investigate the rate of aerodynamic heat transfer on the surface of a blunt body of revolution flying at supersonic speed. A mathematical model, based on Illingworth-Stewartson transformation and a perturbation technique with a similarity analysis, which describes the aerodynamic heating processes associated with supersonic flight of a blunt-nose projectile has been developed. The governing transport equations are reduced to a set of coupled nonlinear ordinary differential equations in first, third, and fifth order of the transformed coordinates. The equations were solved by a standard numerical integration scheme. Results describing velocity and temperature, profiles inside the boundary layer, skin friction and local heat transfer rates are presented.
Descriptors:
Subject Categories:
- Guided Missile Reentry Vehicles
- Fluid Mechanics