DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
AD1160054
Title:
Using Reinforcement Learning to Model Incrementality in a Fast-Paced Dialogue Game
Descriptive Note:
[Technical Report, Research Paper]
Corporate Author:
UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES
Report Date:
2017-01-01
Pagination or Media Count:
11
Abstract:
We apply Reinforcement Learning RL to the problem of incremental dialogue policy learning in the context of a fast-paced dialogue game. We compare the policy learned by RL with a high performance baseline policy which has been shown to perform very efficiently nearly as well as humans in this dialogue game. The RL policy outperforms the baseline policy in offline simulations based on real user data. We provide a detailed comparison of the RL policy and the baseline policy, including information about how much effort and time it took to develop each one of them. We also highlight the cases where the RL policy performs better, and show that understanding the RL policy can provide valuable insights which can inform the creation of an even better rule-based policy.
Distribution Statement:
[A, Approved For Public Release]