Accession Number:

AD1105288

Title:

The Transition to Paschen's Law for Microscale Gas Breakdown at Subatmospheric Pressure

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Purdue University West Lafayette United States

Report Date:

2019-04-05

Pagination or Media Count:

7.0

Abstract:

The decrease in electronic device size necessitates greater understanding of gas breakdown and electron emission at microscale to optimize performance. While traditional breakdown theory using Paschens law PL, driven by Townsend avalanche, fails for gap distance d 15 m, recent studies have derived analytic equations for breakdown voltage when field emission and Townsend avalanche drive breakdown. This study derives a new analytic equation that predicts breakdown voltage VB within 4 of the exact numerical results of a previously derived theory and new experimental results at subatmospheric pressure for gap distances from 125 m. At atmospheric pressure, VB transitions to PL near the product of pressure and gap distance, pd, corresponding to the Paschen minimum at lower pressures, the transition to PL occurs to the left of the minimum. We further show that the work function plays a major role in determining which side of the Paschen minimum VB transitions to PL as pressure approaches atmospheric pressure while field enhancement and the secondary emission coefficient play smaller roles. These results indicate that appropriate combinations of these parameters cause VB to transition to PL to the left of the Paschen minimum, which would yield an extended plateau similar to some microscale gas breakdown experimental observations.

Subject Categories:

  • Physical Chemistry
  • Nuclear Physics and Elementary Particle Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE