Accession Number:



Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Harvard University Cambridge United States

Report Date:


Pagination or Media Count:



Photon-mediated coupling between distant matter qubits may enable secure communication over long distances, the implementation of distributed quantum computing schemes, and the exploration of new regimes of many-body quantum dynamics. Solid-state quantum emitters coupled to nanophotonic devices represent a promising approach towards these goals, as they combine strong light-matter interaction and high photon collection efficiencies. However, nanostructured environments introduce mismatch and diffusion in optical transition frequencies of emitters, making reliable photon-mediated entanglement generation infeasible. Here we address this long-standing challenge by employing silicon-vacancy color centers embedded in electromechanically deflectable nanophotonic waveguides. This electromechanical strain control enables control and stabilization of optical resonance between two silicon-vacancy centers on the hour timescale. Using this platform, we observe the signature of an entangled, superradiant state arising from quantum interference between two spatially separated emitters in a waveguide. This demonstration and the developed platform constitute a crucial step towards a scalable quantum network with solid-state quantum emitters.

Subject Categories:

  • Fiber Optics and Integrated Optics
  • Quantum Theory and Relativity

Distribution Statement: