Accession Number:

AD1104635

Title:

Modeling the Transient Response of Tropical Convection to Mesoscale SST Variations

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Oregon State University Corvallis United States

Report Date:

2019-02-07

Pagination or Media Count:

18.0

Abstract:

A cloud-resolving model coupled to a mixed layer ocean with an initial 500-km-wide, 3-K sea surface temperature SST patch is used to demonstrate the relationship between tropical mesoscale SST gradients and convection under different wind speeds. On these scales, boundary layer convergence toward hydrostatic low surface pressure is partially responsible for triggering convection, but convection subsequently organizes into cells and squall lines that propagate away from the patch. For strong wind 12ms-1, enhanced convection is shifted downstream from the patch and consists of relatively small cells that are enhanced from increased moist static energy MSE flux over the patch. Convection for weak wind 6ms-1 develops directly over the patch, merging in larger-scale coherent squall-line systems that propagate away from the patch. Squall lines decay after approximately 1 day, and convection redevelops over the patch region after 2 days.Decreasing patch SST from ocean mixing in the coupled simulations affects the overall strength of the convection, but does not qualitatively alter the convective behavior in comparison with cases with a fixed 3-K SST anomaly. In all cases, increased fluxes of heat and moisture, along with latent heating from shallow convection, initially generate lower pressure over the patch and convergence of the boundary layer winds. Within about 1 day, secondary convective circulations, such as surface cold pools, act to spread the effects of the convection over the model domain and overwhelm the effect of low pressure. SST anomalies 1 and 0.5 K generate enhanced convection only for winds below 6ms-1.

Subject Categories:

  • Meteorology
  • Thermodynamics
  • Physical and Dynamic Oceanography

Distribution Statement:

APPROVED FOR PUBLIC RELEASE