Accession Number:



Scalable Gas Sensing, Mapping, and Path Planningvia Decentralized Hilbert Maps

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Cornell University Ithaca United States

Report Date:


Pagination or Media Count:



This paper develops a decentralized approach to gas distribution mapping GDM and information-driven path planning for large-scale distributed sensing systems. Gas mapping is performed using a probabilistic representation known as a Hilbert map, which formulates themapping problem as a multi-class classification task and uses kernel logistic regression to train a discriminative classifier online. A novel Hilbert map information fusion method is presented for rapidly merging the information from individual robot maps using limited data communication. A communication strategy that implements data fusion among many robots is also presented for the decentralized computation of GDMs. New entropy-based information-driven path-planning methods are developed and compared to existing approaches, such as particle swarm optimization PSO and random walks RW. Numerical experiments conducted in simulated indoor and outdoor environments show that the information-driven approaches proposed in this paper far outperform other approaches, and avoid mutual collisions in real time.

Subject Categories:

  • Cybernetics
  • Navigation and Guidance

Distribution Statement: