Accession Number:

AD1101757

Title:

Measurement of the 160Gd(p,n)160Tb Excitation Function from 4-18 MeV, using a Stacked Foil Technique

Descriptive Note:

Technical Report,01 May 2018,01 Mar 2020

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States

Personal Author(s):

Report Date:

2020-03-02

Pagination or Media Count:

69.0

Abstract:

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratorys 88-Inch Cyclotron to investigate the 160Gdp,n160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gdp,n160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, nine copper, and eight titanium foils. The stainless steel and iron foils were used to radiograph the beam spot size. Each Gd foil was encapsulated in Kapton tape prior to irradiation to minimize oxidation. The copper, 62Cup,n62Zn and 65Cup,n65Zn, and titanium, 48Tip,n48V and natTip,x46Sc, foils served as monitor foils to determine the proton uence throughout the stack. Variance minimization using a MCNP6.2 model was used to improve the reliability of the cross-section measurements by reducing the uncertainties in proton energy and uence by varying the density and incident beam energy within the uncertainty in the measurement of each. The measured cross section of the 160Gdp,n160Tb generally follows the shape predicted by TENDL-2019, but the cross sections obtained in this work indicate approximately a 20 increase in the maximum cross section. Additionally, other natGdp,x reactions were created through the irradiation, providing experimental measurements of 154Gdp,2n153Tb, 155Gdp,152Eu, 155Gdp,2n154Tb, 155Gdp,n155Tb, 156Gdp,n156Tb,157Gdp,154Eu, 160Gdp,157Eu, and 160Gdp,d159Gd reactions.

Subject Categories:

  • Metallurgy and Metallography
  • Nuclear Physics and Elementary Particle Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE