Accession Number:

AD1101498

Title:

A Metamodel Recommendation System using Meta-Learning

Descriptive Note:

Technical Report,01 Jun 2017,01 Mar 2020

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States

Personal Author(s):

Report Date:

2020-03-01

Pagination or Media Count:

69.0

Abstract:

The importance and value of statistical predictions increase as data grows in availability and quantity. Metamodels, or surrogate models, provide the ability to rapidly approximate and predict information. However, selection of the appropriate metamodel for a given dataset is often a task, and the choice of the wrong metamodel could lead to considerably inaccurate results. This research proposes and tests the framework for a metamodel recommendation system. The implementation allows for virtually any dataset and preprocesses data, calculates meta-features, evaluates the performance of various metamodels, and learns how the data behaves via meta-learning, thus preparing and bettering itself for future recommendations. Testing on over 500 widely varied datasets, the framework provides positive results, often recommending a metamodel with similar performance as the actual best metamodel.

Subject Categories:

  • Information Science
  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE