Accession Number:

AD1101469

Title:

Next-Generation Air Force Weather Metrics Via Bayes Cost Analysis

Descriptive Note:

Technical Report,01 Jun 2018,01 Mar 2020

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States

Personal Author(s):

Report Date:

2020-03-06

Pagination or Media Count:

212.0

Abstract:

This research proposes a new methodology for U.S. Air Force weather forecast metrics. Military weather forecasters are essentially statistical classifiers. They categorize future conditions into an operationally relevant category based on current data, much like an Artificial Neural Net or Logistic Regression model. There is extensive literature on statistically-based metrics for these types of classifiers. Additionally, in the U.S. Air Force, forecast errors errors in classification have quantifiable operational costs and benefits associated with incorrect or correct classification decisions. There is a methodology in the literature, Bayes Cost, which provides a structure for creating statistically rigorous metrics for classification decisions that have such costs and benefits. Applying these types of metrics to Air Force weather yields more informative metrics that account for random chance while remaining simple to calculate. Using notional costs and benefits from Air Force operations subject matter experts, a case study was conducted by performing Bayes Cost-based verification on Terminal Aerodrome Forecasts and WatchesWarningsAdvisories compared to surface observations from a selection of military installations in the continental United States during the period 01 May 2019 to 30 June 2019. The case study illustrates the added utility of the new metric paradigm.

Subject Categories:

  • Meteorology
  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE