Accession Number:

AD1099673

Title:

Identifying Antimicrobial Peptides Using Word Embedding With Deep Recurrent Neural Networks

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Iowa State University, Interdepartmental program in Bioinformatics and Computational Biology Ames United States

Personal Author(s):

Report Date:

2018-11-10

Pagination or Media Count:

8.0

Abstract:

Motivation Antibiotic resistance constitutes a major public health crisis, and finding new sources of antimicrobial drugs is crucial to solving it. Bacteriocins, which are bacterially produced antimicrobial peptide products, are candidates for broadening the available choices of antimicrobials. However, the discovery of new bacteriocins by genomic mining is hampered by their sequences low complexity and high variance, which frustrates sequence similarity-based searches. Results Here we use word embeddings of protein sequences to represent bacteriocins, and apply a word embedding method that accounts for amino acid order in protein sequences, to predict novel bacteriocins from protein sequences without using sequence similarity. Our method predicts, with a high probability, six yet unknown putative bacteriocins in Lactobacillus. Generalized, the representation of sequences with word embeddings preserving sequence order information can be applied to peptide and protein classification problems for which sequence similarity cannot be used.

Subject Categories:

  • Information Science
  • Microbiology

Distribution Statement:

APPROVED FOR PUBLIC RELEASE