Accession Number:

AD1099668

Title:

Biophysical Submesoscale Processes in the Wake of Hurricane Ivan: Simulations and Satellite Observations

Descriptive Note:

Journal Article - Open Access

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC WASHINGTON United States

Report Date:

2019-10-23

Pagination or Media Count:

19.0

Abstract:

Tropical cyclone induced phytoplankton productivity is examined using a tropical cyclone version of the Coupled OceanAtmosphere Mesoscale Prediction System COAMPS R. A four-component Nutrient-Phytoplankton-Detritus biological model is integrated into COAMPS to create a fully integrated air-ocean-wave-biology model. This study investigates the upper ocean physical and biological states before and after Hurricane Ivan traversed the central Gulf of Mexico, in mid-September 2004. Elevated concentrations of surface chlorophyll-a appear in the simulation two days after the passage of the tropical cyclone, and these results are spatially and temporally coherent with Moderate Resolution Imaging Spectroradiometer MODIS satellite data for this time period. Model results reveal enhancement of chlorophyll-a in submesoscale filaments on the periphery of a warm-core eddy that are dominated by large values of lateral strain and relative vorticity at the surface. The vertical circulation of the filament, with its associated upward vertical motion, permits surface ventilation of cold, nitrogen-rich water and subsequent stimulation of primary biological production. Here, we show for the first time that coupled biological-physical submesoscale processes may be simulated via a fully integrated air-sea-wave-biology tropical cyclone model that provides a mechanistic explanation of the conspicuous features revealed in satellite ocean color imagery following Ivan.

Subject Categories:

  • Atmospheric Physics
  • Biological Oceanography
  • Optical Detection and Detectors

Distribution Statement:

APPROVED FOR PUBLIC RELEASE