Accession Number:

AD1095826

Title:

Molecular Polaritons for Controlling Chemistry with Quantum Optics

Descriptive Note:

Journal Article - Open Access

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC WASHINGTON Chile

Personal Author(s):

Report Date:

2020-03-10

Pagination or Media Count:

20.0

Abstract:

This is a tutorial-style introduction to the field of molecular polaritons. We describe the basic physical principles and consequences of strong light-matter coupling common to molecular ensembles embedded in UV-visible or infrared cavities. Using a microscopic quantum electrodynamics formulation, we discuss the competition between the collective cooperative dipolar response of a molecular ensemble and local dynamical processes that molecules typically undergo, including chemical reactions. We highlight some of the observable consequences of this competition between local and collective effects in linear transmission spectroscopy, including the formal equivalence between quantum mechanical theory and the classical transfer matrix method, under specific conditions of molecular density and indistinguishability. We also overview recent experimental and theoretical developments on strong and ultrastrong coupling with electronic and vibrational transitions, with a special focus on cavity-modified chemistry and infrared spectroscopy under vibrational strong coupling. We finally suggest several opportunities for further studies that may lead to novel applications in chemical and electromagnetic sensing, energy conversion, optoelectronics, quantum control, and quantum technology.

Subject Categories:

  • Quantum Theory and Relativity

Distribution Statement:

APPROVED FOR PUBLIC RELEASE