Accession Number:

AD1095655

Title:

Path-Based Dictionary Augmentation: A Framework for Improving k-Sparse Image Processing

Descriptive Note:

Journal Article - Open Access

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC WASHINGTON United States

Report Date:

2019-07-15

Pagination or Media Count:

12.0

Abstract:

We have previously shown that augmenting orthogonal matching pursuit OMP with an additional step in the identification stage of each pursuit iteration yields improved k-sparse reconstruction and denoising performance relative to baseline OMP. At each iteration a path or geodesic, is generated between the two dictionary atoms that are most correlated with the residual and from this path a new atom that has a greater correlation to the residual than either of the two bracketing atoms is selected. Here, we provide new computational results illustrating improvements in sparse coding and denoising on canonical datasets using both learned and structured dictionaries. The two methods of constructing a path are investigated for each dictionary type the Euclidean geodesic formed by a linear combination of the two atoms and the 2-Wasserstein geodesic corresponding to the optimal transport map between the atoms. We prove here the existence of a higher-correlation atom in the Euclidean case under assumptions on the two bracketing atoms and introduce algorithmic modifications to improve the likelihood that the bracketing atoms meet those conditions. Although, we demonstrate our augmentation on OMP alone, in general it may be applied to any reconstruction algorithm that relies on the selection and sorting of high-similarity atoms during an analysis or identification phase.

Subject Categories:

  • Cybernetics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE