Accession Number:

AD1084932

Title:

Statistical L-Moment and L-Moment Ratio Estimation and their Applicability in Network Analysis

Descriptive Note:

Technical Report,01 Sep 2016,01 Sep 2019

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States

Personal Author(s):

Report Date:

2019-08-23

Pagination or Media Count:

277.0

Abstract:

This research centers on finding the statistical moments, network measures, and statistical tests that are most sensitive to various node degradations for the Barabasi-Albert, Erdos-Renyi, and Watts-Strogratz network models. Thirty-five different graph structures were simulated for each of the random graph generation algorithms, and sensitivity analysis was undertaken on three different network measures degree, betweenness, and closeness. In an effort to find the statistical moments that are the most sensitive to degradation within each network, four traditional moments mean, variance, skewness, and kurtosis as well as three non-traditional moments L-variance, L-skewness, and L-kurtosis were examined. Each of these moments were examined across 18 degrade settings to highlight which moments were able to detect node degradation the quickest. Closeness and the mean were the most sensitive measures to node degradation across all scenarios. The results showed L-moments and L-moment ratios were less sensitive than traditional moments. Subsequently sample size guidance and confidence interval estimation for univariate and joint L-moments were derived across many common statistical distributions for future research with L-moments.

Subject Categories:

  • Theoretical Mathematics
  • Statistics and Probability

Distribution Statement:

APPROVED FOR PUBLIC RELEASE