Accession Number:



Transcriptomic Characterization of Caecomyces churrovis: A Novel, Non-rhizoid-Forming Lignocellulolytic Anaerobic Fungus

Descriptive Note:

Journal Article - Open Access

Corporate Author:

University of California Santa Barbara United States

Report Date:


Pagination or Media Count:



Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes CAZymes for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growth on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes fungal cellulosomes in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15 of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30 in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. Overall, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome

Subject Categories:

Distribution Statement: