Accession Number:

AD1065429

Title:

Ships' Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data

Descriptive Note:

Technical Report

Corporate Author:

Naval Postgraduate School Monterey United States

Personal Author(s):

Report Date:

2018-09-01

Pagination or Media Count:

97.0

Abstract:

The objective of this research is to develop a method for predicting the future behavior of ships and detecting anomalous behavior based on their past location coordinates and a set of context features. We use a Recurrent Neural Network model with inputs extracted from Automated Information System AIS data. This data includes ship coordinates, speed and course, and the ships call sign, size, and type. These features are appropriately encoded to amplify significant predictive structures within the data. The ability to automate the task of track prediction and the process of detecting anomalous ship behavior serves to increase maritime domain awareness and aid security analysts in deciding how to best allocate limited resources. Furthermore, these capabilities enable the investigation of potential threats, prevention of collisions, and planning for search-and rescue missions.

Subject Categories:

  • Marine Engineering

Distribution Statement:

APPROVED FOR PUBLIC RELEASE