Accession Number:

AD1058796

Title:

The evolution of distributed sensing and collective computation in animal populations

Descriptive Note:

Journal Article - Open Access

Corporate Author:

Department of Ecology and Evolutionary Biology, Princeton University Princeton United States

Report Date:

2015-12-10

Pagination or Media Count:

43.0

Abstract:

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues causes pontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly, and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.

Subject Categories:

  • Ecology

Distribution Statement:

APPROVED FOR PUBLIC RELEASE