Accession Number:

AD1058011

Title:

Leveraging Synthetic Imagery for Collision-at-sea Avoidance

Descriptive Note:

Technical Report,16 Aug 2017,16 Aug 2018

Corporate Author:

SPACE AND NAVAL WARFARE SYSTEMS CENTER PACIFIC SAN DIEGO CA SAN DIEGO United States

Report Date:

2018-08-16

Pagination or Media Count:

16.0

Abstract:

Maritime collisions involving multiple ships are considered rare, but in 2017 several United States Navy vessels were involved in fatal at-sea collisions that resulted in the death of seventeen American Service members. The experimentation introduced in this paper is a direct response to these incidents. We propose a shipboard Collision-At-Sea avoidance system, based on video image processing, that will help ensure the safe stationing and navigation of maritime vessels. Our system leverages a convolutional neural network trained on synthetic maritime imagery in order to detect nearby vessels within a scene, perform heading analysis of detected vessels, and provide an alert in the presence of an inbound vessel. Additionally, we present the Navigational Hazards - Synthetic NAVHAZ-Synthetic dataset. This dataset, is comprised of one million annotated images of ten vessel classes observed from virtual vessel-mounted cameras, as well as a human Topside Lookout perspective. NAVHAZ-Synthetic includes imagery displaying varying sea-states, lighting conditions, and optical degradations such as fog, sea-spray, and salt-accumulation. We present our results on the use of synthetic imagery in a computer vision based collision-at-sea warning system with promising performance.

Subject Categories:

  • Marine Engineering
  • Safety Engineering

Distribution Statement:

APPROVED FOR PUBLIC RELEASE