Accession Number:

AD1033906

Title:

Apprenticeship Learning: Learning to Schedule from Human Experts

Descriptive Note:

Technical Report

Corporate Author:

MASSACHUSETTS INST OF TECH LEXINGTON LEXINGTON United States

Report Date:

2016-06-09

Pagination or Media Count:

8.0

Abstract:

Coordinating agents to complete a set of tasks with intercoupled emporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the one-expert, one-trainee apprenticeship model. However, a human domain expert often has difficulty describing their decision-making process, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state-space. We empirically demonstrate that this approach accurately learns multi-faceted heuristics on both a synthetic data set incorporating job-shop scheduling and vehicle routing problems and a real-world data set consisting of demonstrations of experts solving a variant of the weapon-to-target assignment problem. Our approach is able to learn scheduling policies of superior quality to those generated, on average, by human experts conducting an anti-ship missile defense task.

Subject Categories:

  • Personnel Management and Labor Relations

Distribution Statement:

APPROVED FOR PUBLIC RELEASE