Accession Number:

AD1028880

Title:

Minimum Fuel Trajectory Design in Multiple Dynamical Environments Utilizing Direct Transcription Methods and Particle Swarm Optimization

Descriptive Note:

Technical Report,01 Aug 2014,24 Mar 2016

Corporate Author:

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States

Personal Author(s):

Report Date:

2016-03-01

Pagination or Media Count:

184.0

Abstract:

Particle swarm optimization is used to generate an initial guess for designing fuel-optimal trajectories in multiple dynamical environments. Trajectories designed in the vicinity of Earth use continuous or finite low-thrust burning and transfer from an inclined or equatorial circular low-Earth-orbit to a geostationary orbit. In addition, a trajectory from near-Earth to a periodic orbit about the cislunar Lagrange point with minimized impulsive burn costs is designed within a multi-body dynamical environment. Direct transcription is used in conjunction with a nonlinear optimizer to find locally-optimal trajectories given the initial guess. The near-Earth transfers are propagated at low-level thrust where neither the very-low-thrust spiral solution nor the impulsive transfer is an acceptable starting point. The very-high-altitude transfer is designed in a multi-body dynamical environment lacking a closed-form analytical solution. Swarming algorithms excel given a small number of design parameters. When continuous control time histories are needed, employing a polynomial parameterization facilitates the generation of feasible solutions. For design in a circular restricted three-body system, particle swarm optimization gains utility due to a more global search for the solution, but may be more sensitive to boundary constraints. Computation time and constraint weighting are areas where a swarming algorithm is weaker than other approaches.

Subject Categories:

  • Spacecraft Trajectories and Reentry
  • Celestial Mechanics
  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE