Accession Number:

AD1024622

Title:

Improving Prescripted Agent Behavior with Neuroevolution

Descriptive Note:

Technical Report

Corporate Author:

University of Texas at Austin Austin United States

Personal Author(s):

Report Date:

2005-01-01

Pagination or Media Count:

7.0

Abstract:

Machine learning can increase the appeal of video games by allowing agents to adapt in response to the player. Therefore, methods need to be developed specifically for video games that adapt agent behaviors in real-time. For example, the real-time NeuroEvolution of Augmenting Topologies rtNEAT method evolves artificial neural networks ANNs fast enough so that improvements can be perceived by the player. However, video game developers are accustomed to relying on prescripted behaviors, frequently encoded in finite state machines FSMs. It is difficult to incorporate agents that develop behaviors on their own into the current practice. Such learned behaviors might be undesirable, violating the designers intentions. This problem could be avoided if game designers could specify an initial behavior using an FSM and allow adaptation. This paper describes such a method, Knowledge-Based NEAT KB-NEAT, which converts a FSM into an ANN using a KBANN-based technique. In this paper, KB-NEAT is tested in the game of blackjack, demonstrating that the FSM successfully converts into an ANN with identical behavior and further improves its performance during the game using NEAT. KB-NEAT can help the game industry utilize machine learning methods with minimal change to current practices.

Subject Categories:

  • Cybernetics
  • Operations Research

Distribution Statement:

APPROVED FOR PUBLIC RELEASE