# Accession Number:

## AD1017084

# Title:

## The Power of Slightly More than One Sample in Randomized Load Balancing

# Descriptive Note:

## Journal Article

# Corporate Author:

## Cornell University Ithaca United States

# Personal Author(s):

# Report Date:

## 2015-04-26

# Pagination or Media Count:

## 24.0

# Abstract:

In many computing and networking applications, arriving tasks have to be routed to one of many servers, with the goal of minimizing queueing delays. When the number of processors is very large, a popular routing algorithm works as follows select two servers at random and route an arriving task to the least loaded of the two. It is well-known that this algorithm dramatically reduces queueing delays compared to an algorithm which routes to a single randomly selected server. In recent cloud computing applications, it has been observed that even sampling two queues per arriving task can be expensive and can even increase delays due to messaging overhead. So there is an interest in reducing the number of sampled queues per arriving task. In this paper, we show that the number of sampled queues can be dramatically reduced by using the fact that tasks arrive in batches called jobs. In particular, we sample a subset of the queues such that the size of the subset is slightly larger than the batch size thus, on average, we only sample slightly more than one queue per task. Once a random subset of the queues is sampled, we propose a new load balancing method called batch-filling to attempt to equalize the load among the sampled servers. We show that our algorithm maintains the same asymptotic performance as the so-called power-of-two-choices algorithm while using only half the number of samples.