Accession Number:



Experimental Entanglement of Four Particles

Descriptive Note:

Journal Article

Corporate Author:

National Institute of Standards and Technology Boulder United States

Report Date:


Pagination or Media Count:



Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such entangled states explicitly demonstrate the non-local character of quantum theory footnote 1, having potential applications in high-precision spectroscopy footnote 2, quantum communication, cryptography and computation footnote 3. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited footnotes 4,5and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique footnote 6 to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.

Subject Categories:

Distribution Statement: