Accession Number:

AD1000132

Title:

Breaking Spaces and Forms for the DPG Method and Applications Including Maxwell Equations

Descriptive Note:

Technical Report

Corporate Author:

TEXAS UNIV AT AUSTIN AUSTIN

Report Date:

2015-07-01

Pagination or Media Count:

40.0

Abstract:

Discontinuous Petrov Galerkin DPG methods are made easily implementable using broken test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order unbroken Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultra-weak form, and a spectrum of forms in between.

Subject Categories:

  • Numerical Mathematics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE