# Accession Number:

## AD0801570

# Title:

## GRAVITATIONAL COLLAPSE AND RELATIVISTIC MAGNETOHYDRODYNAMICS.

# Descriptive Note:

## Rept. for Mar-Apr 66,

# Corporate Author:

## AEROSPACE CORP EL SEGUNDO CA LAB OPERATIONS

# Personal Author(s):

# Report Date:

## 1966-08-01

# Pagination or Media Count:

## 21.0

# Abstract:

Einsteins field equations for a perfect fluid coupled to a frozen-in magnetic field are studied in the high-density limit of gravitational collapse. The assumption of infinite electrical conductivity is used to integrate Maxwells equations and the fluid entropy conservation equation and the integrals obtained show that there are certain general, physically reasonable conditions under which the electromagnetic energy density can become much larger than the fluid energy density as the collapse proceeds, even when the electromagnetic field was initially very weak. The widest possible range of cases is discussed under the assumption that the equation of state is asymptotically linear. Ways in which the hypotheses used might go wrong are mentioned. Author

# Descriptors:

# Subject Categories:

- Plasma Physics and Magnetohydrodynamics
- Quantum Theory and Relativity