Accession Number:
AD0758756
Title:
Test Input Evaluation for Optimal Adaptive Filtering.
Descriptive Note:
Rept. for Jun-Oct 72,
Corporate Author:
AEROSPACE CORP EL SEGUNDO CALIF ENGINEERING SCIENCE OPERATIONS
Personal Author(s):
Report Date:
1972-11-07
Pagination or Media Count:
14.0
Abstract:
Average statistical divergence is proposed as a figure of merit for ranking test inputs used in identifying the unknown parameters of a system. Average divergence is a concept taken from communication theory it can be computed a priori from a recursion relation derived in this paper. Two closed-form analytic examples are presented. The development in the paper is for linear multistage processes and is applicable to on-line nonstationary adaptive filtering problems. The average divergence of a general multistage process that has unknown parameters can be calculated recursively. Author
Descriptors:
Subject Categories:
- Statistics and Probability